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1 Introduction

Recently a lot of attention has been focused on the properties of flavored holographic gauge
theories and their potential application to realistic phenomenological models. One of the
main motivations for such studies is the simple geometric description that holographic
models provide of non-perturbative phenomena difficult to study via conventional field
theoretical methods.

Despite the growing spectrum of applications of the AdS/CFT correspondence [1] a
major limitation is that realistic field theories do not seem to have simple holographic
backgrounds. This is why it is of particular importance to investigate properties of non-
abelian gauge theories exhibiting universal behavior. Particularly interesting is to analyze
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the phase structure of strongly coupled Yang-Mills theories. An example of such application
of the holographic approach is the study of properties of strongly coupled quark-gluon
plasmas (see refs. [2, 3] for a recent review).

The rich and complicated dynamics of strongly coupled non-abelian gauge theories
suggests investigation of their response to strong controlling parameters such as temper-
ature, external electromagnetic fields and various chemical potentials. In this regime one
may expect that otherwise different theories would exhibit similar behavior and one can
extract valuable results by analyzing holographic gauge theories. This is the context of our
present studies.

Our holographic set up employs holographic gauge theories dual to the Dp/Dq-brane
intersection. This class of gauge theories has been extensively studied in the literature. The
first and most studied example is the D3/D7-brane intersection [4]. Early studies of the
meson spectrum have been performed in ref. [5]. The phase structure of the theory at finite
temperature has been studied in [6] and a Meson Melting phase transition corresponding
to a topology changing transition of the probe D7-branes has been revealed. More detailed
studies of this phase transition have been performed in refs. [7]–[13]. The phase transition
has been classified as a first order one. Universal behavior of the general Dp/Dq-brane
system has been uncovered. Various properties of the general Dp/Dq-brane set up in
constant external electric and magnetic fields have been analyzed in refs. [20]–[34].

One major aspect of the analysis presented in this paper is the phenomena of mass
generation in an external magnetic field. This phenomena has been extensively studied
in the conventional field theory literature [14]–[19]. The effect was shown to be model
independent and therefore insensitive to the microscopic physics underlying the low energy
effective theory. The essence of this effect is the dimensional reduction D → D−2 (1+3→
1 + 1) in the dynamics of fermion pairing in a magnetic field.

Magnetic catalysis of mass generation has been demonstrated in various 1+2 and 1+3
dimensional field theories. Given the universal nature of this effect it is natural to explore
this phenomena in the context of holographic gauge theories. Such studies for the Dp/Dq-
brane intersections have been extensively performed for both 1+2 and 1+3 dimensional
theories. In ref. [31] an universal description of the general Dp/Dq-brane system has
been attempted. It has been demonstrated that the mechanism of spontaneous symmetry
breaking in external magnetic field for the Dp/Dq-brane system is a universal feature of
this class of theories.

Particularly interesting are the findings for the D3/D5-brane set up. Recently this
theory received a great deal of attention and emphasis has been made of the potential
application of this D-brane configuration in describing qualitative properties of 1 + 2 di-
mensional condensed matter systems (see for example refs. [29, 30, 35]). In ref. [31] it
has been shown that the pseudo-Goldstone modes of this theory satisfy non-relativistic
dispersion relation. The low energy effective action has been obtained. To the computed
order, it agrees to the effective action of spin waves in a ferromagnetic. The existence of a
single time derivative term in the effective action confirms the potential phenomenological
applications of this model.

In this paper we extend our previous investigation of the D3/D5-brane set up in an ex-
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ternal magnetic field to the case of finite temperature. However, we are not only interested
in expanding the description of the pseudo-Goldstone modes to the finite temperature case
but also in studying the effect that the external magnetic field has on the Meson Melting
phase transition. This is why we are interested in both the small and large bare mass
sectors of the theory. Similar studies of the D3/D7-brane set up have been performed
in [24, 25]. It has been shown that the magnetic field has a freezing effect on the phase
transition and for sufficiently strong magnetic field the melted mesons phase cease existence
(for any bare mass). Our studies reveal the same qualitative behavior in the case of the
D3/D5-brane set up. However there are some differences that are of potential interest.

Let us summarize the content of the paper:

Section 2 of this work is separated into two subsections. In the first subsection we
provide a brief description of the holographic set up. The parameterization of the back-
ground geometry that we use, the basic extracts from the AdS/CFT dictionary needed
for the holographic description as well as the method of introducing external magnetic
field, are presented. The second subsection studies the equation of state of the system in
the condensate versus bare mass plane. The study involves both analytic and numerical
techniques. The analytic results are for large bare masses. An asymptotic expression for
the condensate as a function of the magnetic field, the temperature and the bare mass is
obtained. It is demonstrated that unlike the 1+3 dimensional case (the D3/D7-brane set
up) in the 1+2 dimensional case the competing effect of the magnetic field and the temper-
ature is present even at large bare masses. This gives the possibility to tune the condensate
of the theory to zero for arbitrarily large masses. The reason for that could be that un-
like in the D3/D7-brane set up the external magnetic field does not require new counter
terms in the holographic regularization of the D-brane action. For small bare masses we
perform a numerical analysis. The freezing effect of the magnetic field is demonstrated.
The existence of a critical ratio of the temperature and the square root of the magnetic
field beyond which the phase transition disappears is demonstrated.

Section 3 of this parer is dedicated to the thermodynamic analysis of the theory. A
holographic renormalization of the D5-brane action in the spirit of [37] is performed and
the free energy density of the theory is obtained. The proper thermodynamic ensemble
is identified and the phase diagram of the theory in various coordinates is constructed.
The temperature dependence of the condensate at zero bare mass is explored as an order
parameter for the “chiral” phase transition. A study of the entropy density is performed. It
is demonstrated that at zero bare mass the jump of the entropy density is enhanced relative
to the jump of the entropy density at large bare masses. A possible explanation is that at
zero bare mass the Meson Melting phase transition is also a chiral phase transition. Finally,
the magnetization of the theory is computed. It is demonstrated that both the confined
and deconfined phases are diamagnetic.1 In the confined phase the diamagnetic response
of the theory is almost independent on the temperature. At the phase transition the
magnetization has a large negative jump and a very strong diamagnetic response possibly

1Note that the terms “confined” and “deconfined” refer to the fundamental matter of the theory. The
adjoined degrees of freedom are always deconfined.
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because the theory is in a conductive phase. Interestingly the diamagnetic response of
the deconfined phase depends strongly on the temperature and vanishes inversely with the
temperature. The strong temperature dependence reflects the temperature dependence
of the conductivity. At large temperature the susceptibility is deduced by dimensional
analysis reflecting the return to conformality.

Section 4 of this work studies the meson spectrum of the theory. First the spectrum
of fluctuations corresponding to the radial coordinate in the R3 subspace transverse to
the color and flavor D-branes are considered and the stability of the theory is analyzed.
Both normal and quasinormal excitations are studied. It is demonstrated that the ther-
modynamically stable phases are tachyon free. It is also verified that phases with negative
heat capacity have tachyonic spectrum and are thus unstable. The existence of metastable
phases accessible by supercooling is inferred. At zero bare mass the case of zero magnetic
field and finite temperature is analyzed along the lines of ref. [12]. The corresponding
Heun equation is solved employing the method of continued fractions. Next, the spec-
trum corresponding to fluctuations along the angular coordinates of the transverse R3

subspace is analyzed. Only the confined phase is considered. The qualitative features of
the spectrum are the same as for the zero temperature case studied in [31]. At large bare
masses a Zeeman splitting of the energy levels is observed. For small bare masses the spec-
trum of the pseudo-Goldstone modes is analyzed. A non-relativistic dispersion relation
is observed. The analysis of the pseudo-Goldstone modes is performed both numerically
and analytically.

We end the paper with a brief conclusion in section 5.

2 Preliminaries

2.1 General set up

Let us consider the supergravity background corresponding to the near horizon limit of Nc

coincident D3-branes at finite temperature:

ds2/α′ = − (4r4 − b4)2

4R2r2(4r4 + b4)
dt2 +

4r4 + b4

4R2r2
d~x2 +

R2

r2
(dρ2 + ρ2dΩ2

2 + dl2 + l2dΩ̃2
2);

eΦ =
1
gs

; C
(4)
01234 =

1
gs

(4r4 + b4)2

16R4r4
, (2.1)

where dΩ2 = dα2 + cosα2dβ2; dΩ̃2
2 = dψ2 + cos2 ψdφ2; r2 = ρ2 + l2.

The metric in equation (2.1) corresponds to the AdS5×S5 black hole in a Poincare patch.
Its extremal limit is holographically dual to an N = 4 SU(Nc) Supersymmetric Yang-Mills
theory in 1 + 3 dimensions [1]. The radius of the asymptotically AdS5 space is related
to the ’t Hooft coupling of the gauge theory via R4 = 2λα′2. The Hawking temperature
of the AdS5 black hole is given by T = b/πR2 and is interpreted as the temperature of
the holographically dual gauge theory. For the choice of radial coordinate considered in
equation (2.1) the subspace transverse to the volume of the background color D3-branes is
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conformally R6. We have further split the transverse R6 subspace to the product R3 × R3

and introduced spherical coordinates ρ,Ω2 and l, Ω̃2 in the corresponding subspaces.

Next we introduce Nf probe D5-branes extended along the t, x1, x2, ρ,Ω2 directions of
the geometry. In the extremal limit such embeddings preserve half of the original super-
symmetries of the background. The lowest energy sector of strings stretched between the
D3– and D5– branes gives rise to Nf fundamental N = 2 hypermultiplets confined on a
1 + 2 dimensional defect [8–10]. The asymptotic separation of the D3– and D5– branes
in the transverse R3 subspace is parameterized by l and is proportional to the bare mass
of the fundamental N = 2 hypermultiplets. If we consider the following ansatz for the
D5-brane embeddings:

l = l(ρ) ; ψ = 0 ; φ = 0 , (2.2)

the exact relation is given by:

m ≡ l(∞) = (2πα′)mq , (2.3)

where mq is the bare mass of the fundamental field in the corresponding gauge theory.
If the D3–and D5–branes overlap, the corresponding fundamental fields are massless and
the theory has a global SO(3)R×SO(3) symmetry corresponding to independent rotations
in the two R3 subspaces of the transverse R6 space. A non-trivial profile of the D5-
brane (l(r) 6= 0) in the transverse R3 subspace would break the global symmetry down to
SO(3)R×U(1), where U(1) is the little group in the transverse R3 subspace. Furthermore,
if the D5-brane wraps a shrinking S2 cycle and closes at some radial (coordinate) distance
above the horizon this distance is interpreted as the dynamically generated mass of the
theory [13].

However the gauge theory dual to the D3/D5-brane system is conformal at zero bare
mass and does not exhibit spontaneous symmetry breaking. One way to catalyze sponta-
neous symmetry breaking is to introduce a constant magnetic field to the theory. The effect
of mass generation in external magnetic field has been widely studied on field theory side
refs. [14]–[19]. In the context of AdS/CFT the effect of magnetic catalysis in holographic
gauge theories has been studied in [20]–[32]. In order to introduce magnetic field to the
holographic set up we turn on a constant B-field along the x1, x2 directions of the geometry:

B(2) = Hdx1 ∧ dx2 . (2.4)

On field theory side this corresponds to introducing constant magnetic field H/(2πα′)
perpendicular to the plane of the defect. The D5-brane embedding is determined by the
DBI action:

SDBI = −Nfµ5

∫
M6

d6ξe−Φ[−det(Gab +Bab + 2πα′Fab)]1/2 . (2.5)

Where Gab and Bab are the pull-back of the metric and the B-field respectively and Fab is
the gauge field on the D5-brane.
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With the ansatz (2.2) the Lagrangian is given by:

L ∝ ρ2

(
1− b4

4r4

)(
1 +

b4

4r4

)1/2(
1 +

16R4H2r4

(4r4 + b4)2

)1/2√
1 + l′2 cosα . (2.6)

For large ρ� b the Lagrangian (2.6) asymptotes to:

L ∝ ρ2
√

1 + l′2 cosα , (2.7)

which has a general solution of the form:

l(ρ) = m+
c

ρ
+ . . . (2.8)

as we mentioned above the parameter m is the asymptotic separation of the D3– and D5–
branes and corresponds to the bare mass of the dual gauge theory. The AdS/CFT dictio-
nary suggests [4] that the parameter c is proportional to the condensate of the fundamental
fields 〈ψ̄ψ〉. The exact relation is given by [7]:

〈ψ̄ψ〉 = −8π2α′
µ5

gs
c . (2.9)

By solving the equations of motion of the probe D5-brane and extracting the asymptotic
behavior at infinity one can generate the equation of state of theory in the condensate versus
bare mass plane. This is one of the main tools that the holographic set up is providing and
is one of the main technique that we use to construct the phase diagram of the theory.

2.2 The condensate of the theory

In this section we study the fundamental condensate of the theory. We focus on the
dependence of the condensate as a function of the bare mass for fixed temperature and
magnetic field. We explore the effect of the magnetic field on the Meson Melting phase
transition. We show that the magnetic field has a freezing effect on the transition. We also
show that for sufficiently strong magnetic field the theory develops a negative condensate at
zero bare mass and hence the global SO(3) symmetry is spontaneously broken. Let us focus
first on the regime of large bare masses m� b, R

√
H which can be treated analytically.

2.2.1 Exact results for large bare masses

As we discussed above the regime of large bare masses corresponds to a large separation
between the color and flavor D-branes. In this regime the probes are nearly BPS objects,
their embeddings are very close to the trivial l ≡ 0 one and we can expand:

l(ρ) = a+ ξ(ρ) , (2.10)

where ξ(ρ)� m and a ≡ l(0) so that we have:

ξ(0) = ξ′(0) = 0 . (2.11)
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On the other side the radial coordinate r � b remains large along the D5-brane embedding
and hence we can expand the lagrangian (2.6) in powers of b/r. To leading order we obtain
the following equation of motion:

∂ρ(ρ2ξ′(ρ)) = aρ2

(
b4 − 4H2R4

2(ρ2 + a2)3
+

5b8 + 40b4H2R4 + 16H4R8

8(ρ2 + a2)5

)
+ . . . (2.12)

After solving for ξ(ρ), imposing the boundary conditions (2.11) and substituting in (2.12)
we can extract the following expressions for the bare mass m and the fundamental conden-
sate c:

m = a+
b4 − 4H2R4

8a3
+O

(
1
a7

)
; (2.13)

c = −π(b4 − 4H2R4)
32a2

− 5π(5b8 + 40b4H2R4 + 16H4R8)
4096a6

+O

(
1
a11

)
.

The first equation in (2.13) can be easily inverted to obtain our final expression for the
fundamental condensate as a function of the bare mass (valid for large m):

〈ψ̄ψ〉 ∝ −c =
π(b4 − 4H2R4)

32m2
+
π(57b8 − 56b4H2R4 + 592H4R8)

4096m6
+O

(
1
m11

)
. (2.14)

A few comments are in order:
It is interesting that even for large bare masses the competition between the effect

of magnetic field and finite temperature is still present and the condensate can be either
negative or positive depending on the ratio b/R

√
H. This is to be compared to the 1 + 3

dimensional case, studied in [24, 25] (using the D3/D7-brane set up), where the leading
contribution to the condensate is negative and proportional to R4H2/m. As we are going to
see later this seems to be related to the fact that in the 1 + 2 dimensional case the external
magnetic field does not lead to new divergences in the on-shell action. On the other side in
the 1 + 3 dimensional case there is a logarithmic divergence due to the magnetic field [25].

To extend our analysis to the regime of large temperature and magnetic field we need
to employ numerical techniques.

2.3 Numerical results

In this section we solve numerically the equations of motion for the D5-brane embedding
and explore the dependence of the condensate on the bare mass for fixed ratio of the
external magnetic field and temperature of the system.

Note that the background geometry (2.1) has a horizon at r2
0 = b2/2 and the probe

D5-brane embeddings split into two classes:
The first class are Minkowski embeddings which wrap a shrinking S2 cycle in the S5

part of the geometry and close at some finite distance above the black hole.
The second class of embeddings are Black hole type of embeddings that fall into the

AdS5-black hole and have an induced horizon on their worldvolume.
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The transition from one class of embeddings to the other class of embeddings is a
topology change transition2 that corresponds to a first order Meson Melting phase transi-
tion [6, 7, 11] in the holographically dual gauge theory. The class of Minkowski embeddings
corresponds to the confined phase of the theory and the class of Black hole embeddings
correspond to the deconfined phase.3

There is also a critical embedding separating the two classes of embeddings that has
a conical singularity at the horizon of the geometry. A more detailed analysis of the dual
gauge theory near the state corresponding to the critical embedding reveals a discrete self-
similar behavior of the theory. In this regime the theory is characterized by the existence of
multiple (thermodynamically unstable) phases manifested by a double logarithmic struc-
ture of the equation of state curve [7] in the condensate versus bare mass plane. We will not
analyze this unstable regime of the theory any further. Instead we focus on the influence of
the external magnetic field on the Meson Melting phase transition. As we show below the
effect of the magnetic field is to decrease the critical temperature at which the transition
takes place. Furthermore for sufficiently strong magnetic field the phase transition ceases
existence and Minkowski embeddings remain the only thermodynamically stable ones.

For our numerical analysis it is convenient to define the following dimension-
less variables:

ρ̃ = ρ/b; r̃ = r/b; η = HR2/b2; m̃ = m/b; c̃ = c/b2; l̃(ρ̃) =
1
b
l(ρ/b) = m̃+ c̃/ρ̃+ . . .

(2.15)

Upon substitution into the Lagrangian (2.6) we obtain:

L̃ ∝ ρ̃2

(
1− 1

4r̃4

)(
1 +

1
4r̃4

)1/2(
1 +

16η2r̃4

(4r̃4 + 1)2

)1/2√
1 + l̃′2 cosα. (2.16)

To solve numerically the equation of motion obtained from (2.16) we impose the following
boundary conditions:

l̃(0) = l̃0; l̃′(0) = 0; for Minkowski embeddings, (2.17)

l̃(ρ̃)|e.h. = l̃0; l̃′(ρ̃)|e.h. =
l̃0
ρ̃

∣∣∣
e.h.

; for Black Hole embeddings.

Using equation (2.8) we can extract the condensate and bare mass parameters m̃, c̃. The
resulting plots for η = 0, 0.75, 2, 4.25 are presented in figure 1. One can clearly see a first
order phase transition pattern. It is also evident that the critical bare mass m̃cr decreases
as the magnetic field increases and for ηcr ≈ 4.25 it vanishes. Furthermore at m̃ = 0
the theory develops a non-negative condensate and hence the global SO(3) symmetry is
spontaneously broken. It turns out that this symmetry breaking phase exists even for

2Note that the topology of the background does not change. It is the topology of the probe D-brane
embedding that changes.

3We remind the reader that the terms “confined” and “deconfined” refer to the fundamental matter of
the theory. In our set up the adjoined degrees of freedom are always deconfined.
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Figure 1. As one can see the critical bare mass decreases as the magnetic field increases and for
ηcr ≈ 4.25 it vanishes. Beyond this point the lowest positive branch is the stable one and at m̃ = 0
there is a negative condensate breaking the global SO(3) symmetry.

smaller values of the magnetic field (3 < η < 4.25). The analysis of the meson spectrum in
section 4 will show that this is in fact a metastable phase of the theory that becomes stable
at η = ηcr. Note also that there are more than one phases with broken global symmetry
and zero bare mass. However analysis of the free energy density shows (see section 3) that
the phase corresponding to the lowest negative value of the fundamental condensate is the
stable phase.

For large ratios of the external magnetic field and temperature of the system (η > ηcr)
the deconfined phase is parametrically suppressed and the qualitative behavior of the theory
approaches the one studied in ref. [31]. In this limit the condensate curve has a spiral
structure and the stable phase of the theory corresponds to the lowest positive branch of
the spiral.

The values of the critical mass m̃cr in figure 1 were determined by evaluating the free
energy density of the states (alternatively we could use the equal areas law [25]). This
suggests renormalizing the euclidean on-shell action of the probe D-brane and analyzing
the thermodynamic properties of the theory. In the next section we analyze these properties
and construct the phase diagram of the theory.

3 Thermodynamic analysis

Let us begin by calculating the free energy density of the theory.
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3.1 Free energy density

Since our theory is at fixed temperature T and magnetic field B the density of of the
thermodynamic potential describing the ensemble satisfies [25]:

dF = −SdT − µdB . (3.1)

Here S is the entropy density of the system, B = H/(2πα′) is the magnetic field and µ is
the magnetization.

Following ref. [13] we will identify the regularized wick rotated on-shell lagrangian of
the D5-brane with the free energy of the theory. Let us introduce a cut-off at infinity, ρmax,
The wick rotated on-shell lagrangian is given by:

ID5 = Nf
µ5

gs
4πV3b

3

ρ̃max∫
ρ̃min

dρ̃ρ̃2

(
1− 1

4r̃4

)(
1 +

1
4r̃4

)1/2(
1 +

16η2r̃4

(4r̃4 + 1)2

)1/2√
1 + l̃′2 ,

(3.2)
where V3 =

∫
d3x and l̃(ρ̃) is the solution of the equation of motion derived from (2.16). The

parameter ρ̃min = 0 for Minkowski embeddings and ρ̃min = ρ̃|e.h. for Black hole embeddings.
It is easy to check that for large ρmax we have:

b3
ρ̃max∫

dρ̃ρ̃2

(
1− 1

4r̃4

)(
1 +

1
4r̃4

)1/2(
1 +

16η2r̃4

(4r̃4 + 1)2

)1/2√
1 + l̃′2 =

1
3
ρ3

max+O
(

1
ρmax

)
.

(3.3)
Note that the the constant B-field does not introduce new divergencies to the on-shell
action. This is different from the 1+3 dimensional case studied via the D3/D7-brane set up,
where a logarithmic divergency is introduced proportional to R4H2. The ρ3

max divergency
is present even at zero temperature and magnetic field and can be removed by the addition
of appropriate boundary terms. These terms have been computed in [37], where an elegant
renormalization procedure for general Dp/Dq-brane intersections was developed. One can
easily check that in our coordinates the counter terms action boils down to −1

3ρ
3
max. It is

then convenient to define the following finite dimensionless quantity:

ĨD5 =

∞∫
ρ̃min

dρ̃ρ̃2

{(
1− 1

4r̃4

)(
1 +

1
4r̃4

)1/2(
1 +

16η2r̃4

(4r̃4 + 1)2

)1/2√
1 + l̃′2 − 1

}
− 1

3
ρ̃3

min .

(3.4)
Note that ĨD5 depends implicitly on m̃ trough the on-shell form of l̃(ρ̃). Our final expression
for the free energy density is then:

F = Nf
µ5

gs
4πb3ĨD5(m̃, η2) . (3.5)

Using equation (3.5) we can calculate the free energy density of the dual gauge theory in the
functional form F (T,B,mq) = T 3f(mq

T ,
B
T 2 ), therefore the quantity ĨD5 ∝ F/T 3 can be used

to determine the preferred phase at a given temperature. It is straightforward to calculate
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Figure 2. Plots of ĨD5 vs. m̃ for η = 0, .75, 3, 4.25. The critical value m̃cr is determined by the
position of the kink of ĨD5.

the critical bare mass parameter m̃cr at which the Meson Melting phase transition takes
place. Plots of ĨD5 vs. m̃ for η = 0, 0.75, 3, 4.25 (the values from figure 1) are presented in
figure 2. The critical values m̃cr are determined by the kinks of the free energy density. If
we refine our numerical analysis and scan through all possible values of η for witch there is
a phase transition, namely 0 ≤ η ≤ 4.25, we can generate the phase diagram of the theory.

3.2 Phase diagram

In order to construct the phase diagram of the theory we generate numerically the critical
curve m̃cr(η) in the η̃ vs. m̃ plane. The resulting phase diagram is presented in figure 3.
The finite enclosed area corresponds to Black hole embeddings which have quasinormal
mode excitations and hence correspond to the deconfined phase of the theory. The rest of
the phase space corresponds to Minkowski embeddings which are characterized by discrete
normal modes. The normal mode excitations are interpreted as meson-like bound states
of the dual gauge theory. This is the confined phase of the theory. Across the critical
curve the theory undergoes a first order Meson Melting phase transition. Note that for
η > ηcr ≈ 4.25 the phase transition disappears and the theory is in a confined phase for
any m̃. If we consider the horizontal axes of the diagram (m̃ = 0), the Meson Melting
phase transition is a “chiral” phase transition. For η < ηcr the theory has an SO(3) global
symmetry and no mass-gap, while for η > ηcr the theory is in a spontaneously broken
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Figure 3. A phase diagram of the theory. The blue curve separates the confined and deconfined
phases of the theory. There is a first order phase transition across the critical curve. For η < ηcr ≈
4.25 at zero bare mass the theory has a non-broken global SO(3) symmetry, while for η > ηcr the
global symmetry is spontaneously broken and the theory has a mass-gap.

phase with finite mass-gap. There are also Goldstone modes associated to the spontaneous
symmetry breaking which we will study in details in section 4 when we focus on the meson
spectrum of the theory. Qualitatively the phase diagram of the theory is the same as the
one for the 1 + 3 dimensional case studied in [24, 25].

To facilitate comparison to phase diagrams obtained via non-holographic techniques
it is useful to represent our phase diagram in field theory units. To this end note that the
definitions of our dimensionless quantities m̃, η imply the following relations:

1
m̃

=

√
λ

2
T

mq
;

η

m̃2
=

√
λ

2π2

B

m2
q

. (3.6)

Where λ is the ’t Hooft coupling, T is the temperature and B and mq are the magnetic
field and the bare mass of the dual gauge theory. The phase diagram of the theory in these
coordinates is presented in figure 4.

The fitting curve for large B/m2
q corresponds to a ∼ 1√

ηcr

√√
λ

2π2
B
m2

q
behavior. This

reflects the existence of a critical ratio of the magnetic field and the temperature at witch the
phase transition disappears ηcr. Indeed expanding m̃(η) near ηcr and using that m̃(ηcr) ≡ 0
we obtain:

m̃(η) = (η − ηcr)m̃′(ηcr) +O((η − ηcr)2) . (3.7)

Therefore to leading order we have:

1
m̃

=
1
√
ηcr

√
η

m̃2
− 1

2ηcrm̃′(ηcr)
, (3.8)
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√
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which given the relations from equation (3.6) is equivalent to the observed:√
λ

2
T

mq
=

1
√
ηcr

√√
λ

2π2

B

m2
q

+ const; const = − 1
2ηcrm̃′(ηcr)

; (3.9)

behavior for large B/m2
q . On the other side the fitting curve for small B/m2

q in figure 4

corresponds to a ∼ (
√

λ
2π2

B
m2

q
)2 behavior. This simply reflects the fact that ĨD5 is a function

of even powers of η as evident from the definition in equation (3.4).
It is interesting to compare our phase diagram to similar phase diagrams for 1 + 2

dimensional field theories in both external magnetic field and finite temperature. It is
somewhat intriguing that the phase diagram of the 1 + 2 dimensional Gross-Neveu model
studied in refs [17, 18] has the same qualitative structure. It would be interesting to
use alternative non-perturbative techniques to study the phase diagram of the defect field
theory holographically dual to our set up and compare with the result obtained via the
AdS/CFT correspondence. We leave such studies for future investigations.

3.3 The order parameter

In this subsection we focus on the zero bare mass case when the Meson Melting phase
transition is also a spontaneous symmetry breaking phase transition. The quantity that
we are interested in is the fundamental condensate of the theory which serves as an order
parameter of the transition. In particular we are interested in the temperature dependence
of the condensate at zero bare mass.

Let us consider again the zero temperature case with no external field. As mentioned
above at zero bare mass the theory is conformal and has a global SO(3)R×SO(3) symmetry.
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If we introduce external magnetic field [31] the conformal symmetry is broken and the
theory has meson-like excitations. Furthermore the theory develops a negative fundamental
condensate that breaks the SO(3) part of the global symmetry down to a U(1) symmetry.
There are also zero modes identified with the Goldstone bosons of the spontaneously broken
global symmetry. On the other side in our set up the adjoined degrees of freedom are always
in a deconfined phase. Our holographic set up now describes pure Yang-Mills plasma with
some dilute fundamental matter. At low temperatures the fundamental matter is still in
the confined phase and is better described as a gas of mesons. However, at sufficiently
high temperature the alternative deconfined phase becomes the stable one and the theory
undergoes a first order phase transition. The mesons are “melted” and the dynamically
generated mass of the fundamental hypermultiplet fields as well as their condensate vanish.
In the holographic set up this is reflected by the fact that the l̃ ≡ 0 embedding of the D5-
brane becomes the stable one. This suggests that the global symmetry of the theory is
restored in the deconfined phase and we can refer to the transition as a “chiral” transition.

The physical picture described above can be visualized if one generates a plot of the
temperature dependence of the fundamental condensate (for a fixed magnetic field). More
precisely we generate a plot of the ratio of the condensate at finite temperature and the con-
densate at zero temperature 〈ψ̄ψ〉T /〈ψ̄ψ〉0 versus the ratio of temperature and the square
root of the magnetic field T/

√
B. To this end we use that according to equations (2.9)

and (2.15) we have the relations:

〈ψ̄ψ〉T
B

∝ 1
√
η
c̃;

1
√
η

=
(
λπ2

2

)1/4
T√
B

=
T

ΛB
, (3.10)

where we have defined the energy scale parameter:

ΛB =
21/4

λ1/4π1/2

√
B. (3.11)

Note also that the ratio 〈ψ̄ψ〉0/B is obtained in the η → ∞ limit in equation (3.10). The
resulting plot is presented in figure 5.

The upper purple curve corresponds to the confined symmetry breaking phase, the
color represents that this phase is “tachyon” free. (As we will show in section 4). The
states on the left-hand side of the vertical dashed line are thermodynamically favored
and correspond to a stable phase of the theory. The states on the right-hand side of the
critical curve are metastable states. The red curve with negative slope corresponds to
unstable phase of the theory which poses a tachyon in the spectrum. It is also unstable
from thermodynamic point of view. The horizontal red curve corresponds to a symmetric
deconfined phase of the theory which is unstable for temperatures below the critical value
(represented by the vertical dashed line). The purple horizontal line corresponds to a
symmetric deconfined phase of the theory which is “tachyon” free. The states on the
right-hand side of the vertical dashed line are the thermodynamically favored ones and
correspond to a stable phase of the theory. The states of the horizontal purple line that
are on left-hand side of the critical line correspond to a metastable phase of theory and
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Figure 5. A plot of 〈ψ̄ψ〉T /〈ψ̄ψ〉0 versus T/ΛB . The vertical dashed line corresponds to the
critical temperature at which the “chiral” transition takes place. The purple color corresponds to
either stable or metastable phases while the red color represents unstable phases with “tachyonic”
excitations. The fitting curve at small temperatures represents the 1 − const(T/ΛB)4 dependence
from equation (3.12).

can be reached by supercooling. The fitting curve at low temperatures represents the
asymptotic relation:

〈ψ̄ψ〉T
〈ψ̄ψ〉0

= 1− const
(
T

ΛB

)4

; const ≈ 0.929. (3.12)

This relation can be obtained by expanding the equation of motion of the D5-brane em-
bedding in powers of 1/η and solving perturbatively for the leading corrections to the
D5-brane embedding. The perturbative solution is correction near the zero temperature
solution obtained in [31]. It would be nice to derive equation (3.12) from field theory side.
One can also study this relation in the context of chiral perturbation theory. We leave such
studies for future investigations.

3.4 The entropy density

In order to calculate the entropy density of the theory and verify its positivity we can use
equation (3.5) for the free energy density. The entropy density is given by:

S = −
(
∂F

∂T

)
H

= −πR2∂F

∂b
= −Nf

µ5

gs
4π2R2b2

(
3ĨD5 + b

∂ĨD5

∂m̃

∂m̃

∂b
+ b

∂ĨD5

∂η2

∂η2

∂b

)
(3.13)

= −Nf
µ5

gs
4π2R2b2

(
3ĨD5 + m̃c̃− 4

∂ĨD5

∂η2
η2

)
= Nf

µ5

gs
4π2R2b2S̃(m̃, η2) ,
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where we have used that c̃ = −∂m̃ĨD5. We have also defined the dimensionless quantity
S̃(m̃, η2) which is convenient to study numerically.

It is instructive to calculate the entropy density corresponding to the l̃(ρ̃) ≡ 0 em-
bedding first. That is the entropy density at zero bare mass in the deconfined phase with
non-broken global symmetry characterized by vanishing condensate. It turns out that in
this case the entropy density can be obtained in closed form. The result is:

S̃(0, η2) =
√

1 + η2 . (3.14)

In field theory units the entropy density is:

S(mq = 0, T, B) =
√
λ/2NfNc

√
T 4 +

2B2

λπ2
. (3.15)

Note that at large temperature as T →∞ (or equivalently weak magnetic field) the entropy
density grows as ∝ T 2 as one would expect for a 1 + 2 dimensional conformal field theory.
However the limit of zero temperature (at fixed magnetic field) does not lead to vanishing
entropy density. This apparently strange behavior is rectified if one takes into account the
phase diagram of the theory. Indeed, at fixed magnetic field the limit of zero temperature
suggests that η → ∞ which is clearly above the critical value of ηcr and hence the stable
phase of the theory is the confined phase with spontaneously broken global symmetry.
Therefore for very small temperature the entropy density at zero bare mass should be
evaluated at the state characterized by both vanishing bare mass and (the smallest) negative
condensate. The intermediate picture has a first order phase transition at η = ηcr with a
finite jump of the entropy density corresponding to the latent heat of the Meson Melting
phase transition. At zero bare mass this transition is also a “chiral” phase transition. In
fact at small (and zero bare mass) the jump of the entropy density is enhanced because the
dynamical mass generation associated to the “chiral” phase transition freezes some part of
the light degrees of freedom (in the symmetry breaking phase). The latent heat is further
increased (relative to the zero magnetic field case) because of the increased diamagnetic
response of the theory in the deconfined phase (look at subsection 3.4).

To generate a plot of the entropy density S versus the temperature T at fixed magnetic
field B and bare mass mq, we use the following relations:

1
√
η

=
(
λπ2

2

)1/4
T√
B

=
T

ΛB
;

π

NfNc

S

B
=

1
η
S̃(m̃, η). (3.16)

Therefore to evaluate the entropy density at zero bare mass we need to generate a plot
of 1

η S̃(0, η) versus 1√
η . The resulting plot is presented in figure 6. The red curve in the

figure corresponds to the deconfined phase of the theory. As on can see near the phase
transition the entropy density is a multi-valued function of the temperature. The upper
smooth red curve corresponds to a phase with vanishing condensate and non-broken SO(3)
symmetry. It is generated using equation (3.14) for S̃(0, η) . The branch with negative slope
corresponds to a unstable phase characterized by non-zero condensate and is generated
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Figure 6. A plot of the entropy density for zero bare mass mq = 0. The upper red curve
is generated using equation (3.14) for S̃(0, η). The red curve with negative slope is generated
numerically and corresponds to an unstable deconfined phase with broken global symmetry. The
blue curve corresponds to a confined phase with broken global symmetry. The fitting curve at large
temperature corresponds to T 2 dependence as expected for 1 + 2 dimensional conformal theory.
The fitting curve for small temperature corresponds to T 3 behavior. There is a first order “chiral”
phase transition at η = ηcr (the vertical dashed line) characterized by a finite positive jump of the
entropy density . Interestingly the ratio of the entropy density immediately before and after the
phase transition is equal to 2π.

numerically scanning through the corresponding Black hole D5-brane embeddings. The
lowest lying blue curve corresponds to a confined phase in which the global symmetry is
spontaneously broken. It is generated numerically and corresponds to Minkowski D5-brane
embeddings. At η = ηcr there is a first order phase transition (represented by the vertical
dashed line in the figure). One can see that there is a positive jump of the entropy density
as going from the confined to the deconfined phase. The fitting curve at high temperature
corresponds to T 2 behavior, as expected from a 1+2 dimensional conformal field theory [13]
(the effect of the external magnetic field is suppressed in this limit). At low temperature
one can show that the entropy density vanish as T 3. The coefficient of proportionality can
be calculated numerically.

For generic bare masses the entropy density can be studied in two different regimes:
the regime of fixed ratio of magnetic field and temperature (fixed η) and the regime of
fixed ratio of bare mass and external magnetic field (fixed mq/

√
B). The former regime is

technically more convenient to study (the quantity ĨD5 depends explicitly on η). This is also
the regime studied in refs. [24, 25]. However in this regime the slope of the entropy density
S versus temperature T plot is not proportional to the specific heat at fixed magnetic field
cB, because the magnetic field varies with temperature (in order to keep η ∝ B/T 2 fixed).
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Figure 7. Plots of entropy density versus temperature for m̂ = 0.5, 2. The qualitative behavior is
similar to that from figure 6. Major difference is that the deconfined phase with non-broken global
symmetry does not exist for temperatures smaller than the temperature at which the negative slope
deconfined phase appears.

This is why we study the entropy density at fixed ratio of the bare mass and the magnetic
field. This is also a natural generalization of the study of the zero bare mass case and as
we are going to see the qualitative behavior remains unchanged. To perform the study we
use the dimensionless variables defined in equation (3.16). The parameter that we keep
fixed is:

m̂ =
m̃
√
η

= m/R
√
H =

(
2π2

λ

)1/4
mq√
B
. (3.17)

The resulting plots for m̂ = 0.5, 2 are presented in figure 7. Similarly to the zero bare
mass case at high temperatures the entropy density grows as T 2 which is the dependence
expected for 1+2 dimensional conformal field theory at finite temperature. For intermediate
temperatures there is a finite jump of the entropy density associated to a Meson Melting
phase transition of the fundamental matter. At low temperatures the entropy density goes
to zero as T 3. The coefficient of proportionality depends on the ratio mq/

√
B and can be

calculated numerically. Note that near the phase transition the entropy density is a multi-
valued function of the temperature. The multiple phases regime of the theory exists for a
finite interval of temperatures and at the boundaries of this interval the specific heat cB

diverges. A more detailed study of the entropy density in the unstable phase would reveal
that the negative slope curve has more complicated structure. Namely, there is a double
logarithmic structure and the red and blue curves join in the centre of that spiral [7]. We
will not study further this property of the theory.

To determine the critical value of 1/
√
η we have used the phase diagram from figure 4.

Alternatively we could have used the equal areas law [25], because the area below the curves
in figure 7 is proportional to the free energy density of the system.

3.5 The magnetization

In the statistical ensemble that we consider, that is fixed temperature T and fixed magnetic
field B, there is another natural quantity of interest. This is the magnetization of the theory
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given by:

M = −
(
∂F

∂B

)
T

= −8π2α′Nf
µ5

gs
b3

(
∂ĨD5

∂η

)
m̃

R2

b2
= (3.18)

= −8π2α′Nf
µ5

gs
R2b

∞∫
ρ̃min

dρ̃
2ηρ̃2

(
−1 + 4r̃4

)√
1 + l̃′2

r̃2
√

4r̃4 + 1
√

(1 + 4r̃4)2 + 16r̃4η2

≡ 8π2α′Nf
µ5

gs
R2bM̃ .

Here we have defined the dimensionless quantity M̃ . In field theory units the last expression
in equation (3.18) can be rewritten as:

M =
NfNc

π
TM̃ . (3.19)

Thus the quantity M̃ is convenient for studies at fixed non-zero temperature. In order to
incorporate the zero temperature case it is convenient to define:

M =
21/4NfNc

λ1/4π3/2

√
B

1
√
η
M̃ ≡

21/4NfNc

λ1/4π3/2

√
BM̂ =

NfNc

π
ΛBM̂ , (3.20)

where we have used the first equation from (3.16). The dimensionless quantity M̂ is
given by:

M̂ = −
∞∫

ρ̂min

dρ̂
2ρ̂2

(
−1/η2 + 4r̂4

)√
1 + l̂′2

r̂2
√

4r̂4 + 1/η2

√
(1/η2 + 4r̂4)2 + 16r̂4

. (3.21)

Note that we have introduced a new set of dimensionless variables:

ρ̂ = ρ/R
√
H; l̂ = l/R

√
H; (3.22)

convenient to study the theory at a fixed magnetic field. It is instructive to study first the
magnetization at zero temperature.

3.5.1 Magnetization at zero temperature

The zero temperature case corresponds to the limit η → ∞ in equation (3.21). The
expression for the magnetization M̂ is given by:

M̂0 = −
∞∫

ρ̂min

dρ̂
ρ̂2
√

1 + l̂′2

r̂2
√

1 + r̂4
. (3.23)

Here l̂(ρ̂) is a solution to the equation of motion for the D5-brane probing a pure AdS5×S5

space. We will be interested only on the stable branch of the theory. For large bare masses
m̂� 1 one can use the results from ref. [31] for the asymptotic behavior of the condensate:

ĉ = − π

8m̂2
+ . . . (3.24)
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Figure 8. A plot of M̂0 ∝ M0/
√
B versus m̂ ∝ mq/

√
B. The dashed curve corresponds to

equation (3.25) one can see the good agreement for large bare masses. At zero bare mass the
magnetization has a finite negative value. The finite positive slope at small m̂ suggests finite
negative susceptibility.

to show that the asymptotic behavior of the magnetization should be:

M̂0 = − π

4m̂
. (3.25)

after using equations (3.17) and (3.20) we obtain:

M0(B) = −
NfNc

4π
B

mq
+ . . . (3.26)

Therefore at weak magnetic field (large bare mass) the meson gas has diamagnetic prop-
erties with negative susceptibility:

χ0 =
∂M0

∂B
= −

NfNc

4π
1
mq

+ . . . . (3.27)

For large magnetic field the magnetization can be obtained numerically. The resulting
plot is presented in figure 8. As one can see equation (3.25) is a good approximation for
large bare mass (weak magnetic field) while at zero bare mass the magnetization has a
non-vanishing negative value. Furthermore the finite positive slope at small m̂ suggests
finite negative susceptibility. This confirms that at zero temperature the meson gas is in a
diamagnetic phase. One may expect that at finite temperature the diamagnetic properties
of the meson gas would not depend strongly on the temperature. However at high enough
temperature a Meson Melting phase transition takes place and the theory is in a conductive
phase. It would be interesting to study the effect that this transition has on the magnetic
properties of the matter.
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3.5.2 Magnetization at finite temperature

It is instructive to study first the magnetization at zero bare mass mq = 0. At zero bare
mass the theory can be in either confined or deconfined phase depending on the ratio of the
magnetic field and the temperature squared. This is controlled by the parameter η. For
small values of η the theory is in the deconfined phase and has a non-broken SU(3) global
symmetry. The corresponding D5-brane embedding is the l ≡ 0 one. For large enough
temperatures (weak magnetic field) M̃ behaves as:

M̃ = −η +O(η2) . (3.28)

This suggests the following expression for the magnetization M in field theory units:

M = −
21/2NfNc

λ1/2π2

B

T

(
1 +O

(
B

T 2

))
. (3.29)

Clearly the magnetization is negative and the leading contribution to the magnetic suscep-
tibility is:

χ = −
21/2NfNc

λ1/2π2

1
T
. (3.30)

Therefore the deconfined phase of the theory is a diamagnetic phase. Furthermore the dia-
magnetic response depends strongly on the temperature and goes to zero as the temperature
approaches infinity. Curiously equation (3.30) is similar to the Curie’s law χ ∝ 1/T for
a paramagnetic but with the wrong sign. This is also the most simple expression for the
magnetic susceptibility in 1 + 2 dimensions based on dimensional analysis only. Such a
behavior is to be expected since at high temperatures conformality is restored.

For strong magnetic field the magnetization can be obtained numerically. It is conve-
nient to use the parameter M̂ ∝ M/

√
B defined in equation (3.20). A plot of M̂ versus

1/
√
η is presented in figure 9. Note that the axes are labeled in field theory units. The blue

curve for low temperature corresponds to the confined global symmetry breaking phase of
the theory. The dashed horizontal line corresponds to M̂0|m̂=0. As one can see the mag-
netization is negative and the diamagnetic response of the theory varies slightly with the
temperature. At sufficiently high temperature (the vertical line in the figure) the theory
undergoes a first order Meson Melting phase transition, which is also a “chiral” phase tran-
sition. As one can see there is a significant jump of the magnetization suggesting much
stronger diamagnetic response of the theory in the deconfined phase. This is expected
because the deconfined phase is also a conductive phase. Upon further increase of the
temperature the magnetization approaches the behavior described by equation (3.29) (the
fitting curve for high T ). One can see that in the deconfined phase the magnetization
depends strongly on the temperature.

Another interesting feature is that for the minimal value of 1/
√
η for which the de-

confined exists there is a kink and the slope has a finite jump. This is in contrast to the
point corresponding to the maximum value of 1/

√
η for which the confined phase exists.

The slope diverges at this point and the blue curve bends smoothly. It seems that this is
specific for the mq = 0 case.
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Figure 9. A plot of M̂ versus 1/
√
η. The axes are labeled in field theory units. The blue curve

corresponds to the confined global symmetry breaking phase of the theory. The dashed horizontal
line corresponds to M̂0|m̂=0. The dashed vertical line denotes the first order Meson Melting phase
transition. The fitting curve at high T corresponds to equation (3.29).
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Figure 10. Plots of M̂ versus 1/
√
η for m̂ = 0.5, 2. The blue curves correspond to the confined

phase and the horizontal dashed lines correspond to M̂0|m̂=0.5 and M̂0|m̂=2 correspondingly. The
vertical lines correspond to ηcr for which the Meson Melting phase transition takes place. The
red curves describe the magnetization in the deconfined phase of the theory and the fitting curves
correspond to equation (3.29).

The case of generic values of m̂ can also be studied numerically. Plots of M̂ versus
1/
√
η for m̂ = 0.5, 2 are presented in figure 10. As one may expect the magnetization

is negative and for temperatures below the critical one the theory is in a confined phase
(the blue curves in the figure). One can see that the magnetization varies slowly with
temperature and approaches very fast the values for vanishing temperature (M̂0|m̂=0.5

and M̂0|m̂=2) represented by the horizontal dashed lines. At the Meson Melting phase
transition there is a jump of the magnetization. It is interesting that the relative jump of
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the magnetization seems to decrease as m̂ increase (m̂ = 0, 0.5, 2). For high temperature the
theory is in a deconfined phase and the magnetization approaches the behavior described by
equation (3.29). Unlike the m̂ = 0 case there is no kink at the point where the deconfined
phase ceases existence.

4 Meson spectrum

In this section we study the light meson spectrum of the theory. The holographic pre-
scription for obtaining the spectrum of meson-like excitations is to study semi-classical
fluctuations of the probe flavor D-branes. Let us consider a small excitation of the probe
D-brane propagating along the radial direction of the geometry. Since the geometry is
asymptotically AdS space-time the excitations would bounce at infinity without dissipa-
tion. On the other side the geometry has a horizon in the bulk and there are two possibil-
ities. If the D5-brane has a shrinking S2 and close above the horizon (Minkowski type of
embeddings) the excitations would bounce and as a result the D5-brane would have normal
modes corresponding to standing waves. Another possibility is that the D5-brane reaches
the horizon before the S2 shrinks (Black hole embeddings) in this case the excitation fall
into the horizon and dissipate. The corresponding semiclassical excitations are quasinormal
modes satisfying ingoing boundary conditions at the horizon.

The interpretation on gauge theory side of the correspondence is that the normal modes
of Minkowski embeddings correspond to the meson spectrum of the confined phase, while
Black hole embeddings correspond to the deconfined phase of theory and their quasinormal
modes describe mesons melting in the Yang-Mills plasma [12]. The real components of the
quasinormal modes correspond to the energy of the melting meson and the imaginary
component correspond to the relaxation time (if it is negative).

A study of the semiclassical excitations of the theory is of a particular interest when
we have multiple phases because it verifies the thermodynamic analysis of the stability
of different phases (existence or non-existence of tachyonic modes). It is also important
when we have a spontaneous breaking of a continuous symmetry because of the existence
of Goldstone modes and related phenomena.

The meson spectrum of the holographic gauge theory corresponding to the D3/D5-
brane set up has been extensively studied in the literature. In refs. [39, 40] the spectrum
of the supersymmetric zero temperature case has been investigated. In ref. [31] an ex-
ternal magnetic field has been introduced leading to a non-supersymmetric field theory
exhibiting spontaneous symmetry breaking. The corresponding meson spectrum has been
investigated with a focus on the pseudo-Goldstone modes. A non-relativistic dispersion
relation of the Goldstone modes has been revealed and various phenomenological relations
verified. However analysis of the stability based on the massive meson modes has not been
performed. In this paper we will perform such studies in the more general case when a
finite temperature is turned on.

In order to study the light meson spectrum of the theory we look for the quadratic
fluctuations of the D5-brane embedding along the transverse directions parametrized by
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l, ψ, φ. To this end we expand:

l = l̄ + 2πα′δl; ψ = 2πα′δψ; φ = 2πα′δφ , (4.1)

in the action (2.5) and leave only terms of order (2πα′)2. Note that fluctuations of the
U(1) gauge field Fαβ of the D5-brane will also contribute to the expansion. There is also
an additional contribution from the Wess-Zumino term of the D5-brane’s action:

SWZ = Nfµ5

∫
M6

∑
p

P [Cp] ∧ eF ; F = P [B] + 2πα′F . (4.2)

For the ansatz that we are considering, the relevant term is:

SWZ = Nfµ5

∫
M6

P [B] ∧ P [C̃4] , (4.3)

where P [C̃4] is the pull-back of the magnetic dual, C̃4, to the background C4 R-R form.
For the particular parameterization of S5 considered here, it is given by:

C̃4 =
1
gs

4ρ2l2

(ρ2 + l2)3
R4 sinψ(ldρ− ρdl) ∧ dΩ2 ∧ dφ . (4.4)

After some long but straightforward calculations we get the following action for the
quadratic fluctuations along l:

L(2)
ll ∝

1
2

√
−EGll

Sαβ

1 + l′2
∂αδl∂βδl +

1
2

[
∂2
l

√
−E − d

dρ

(
l′

1 + l′2
∂l
√
−E
)]

δl2 , (4.5)

L(2)
lF ∝

√
−E

1 + l′2
(∂lJ12 − ∂rJ12l′)F21δl ,

L(2)
FF ∝

1
4

√
−ESαβSγλFβγFαλ ,

and along φ and ψ:

L(2)
ψψ,φφ ∝

1
2

√
−ESαβ(Gψψ∂αδψ∂βδψ +Gφφ∂αδφ∂βδφ) , (4.6)

L(2)
ψφ ∝ (cosα)PHδψ∂0δφ .

Here Eαβ is the pull-back of the generalized metric on the classical D5-brane embedding:

Eαβ = ∂αX̄
µ∂βX̄

ν(Gµν +Bµν) , (4.7)

and we have defined Sαβ and Jαβ as the symmetric and anti-symmetric elements of the
inverse generalized metric Eαβ:

Eαβ = Sαβ + Jαβ . (4.8)
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The functions P and g(ρ) ≡
√
−E/ cosα are given by:

g(ρ) = ρ2

(
1− b4

4r4

)(
1 +

b4

4r4

)1/2(
1 +

16R4H2r4

(4r4 + b4)2

)1/2√
1 + l′2 , (4.9)

P =
4R4ρ2l2

(ρ2 + l2)3
(ρl′ − l) . (4.10)

4.1 Fluctuations along l.

We first focus our attention to the fluctuations along l. Note that there is no symmetry
associated to translations along l and we do not expect the appearance of Goldstone bosons.
However the absence or presence of tachyons in the spectrum of δl can give us information
about the stability of the phase that we are studying.

The equation of motion derived from the quadratic action (4.6) is the following:

∂ρ

(
g(ρ)δl′

(1 + l′2)2

)
+

4g(ρ)R4

(1 + l′2)(4r4 + b4)
2δl+

g(ρ)
1 + l′2

∆(2)

ρ2
δl−

[
∂2
l g(ρ)− d

dρ

(
l′∂lg(ρ)
1 + l′2

)]
δl=0

(4.11)

where

2 =
−∂2

0

1− 16b4r4

(4r4+b4)2

+
∂2

1 + ∂2
2

1 + 16R4H2r4

(4r4+b4)2

(4.12)

and ∆(2) is the spherical laplacian. Note that the modified operator of d’Alembert reflects
the breaking of the SO(1, 2) Lorentz symmetry down to a SO(2) symmetry.

Let us focus on the meson spectrum of the various phases at zero bare mass. In
particular let us verify that the symmetry breaking phase corresponding to a confined
phase of the theory (the upper purple curve in figure 5) is stable or metastable and has no
tachyon modes. To this end we consider a plane-wave ansatz:

δl̃ = ζ(ρ)e−iωt+i~k.~x . (4.13)

Since we are interested only on the energy of the excitations we will further restrict our
ansatz to ~k = 0. The equation of motion can be written as:

∂ρ̃

(
g̃(ρ̃)ζ ′

(1 + l̃′2)2

)
+

4g̃(ρ̃)(4r̃4 + 1)
(1 + l̃′2)(4r̃4 − 1)2

ω̃2ζ −

[
∂2
l̃
g̃(ρ̃)− d

dρ̃

(
l̃′∂l̃g̃(ρ̃)

1 + l̃′2

)]
ζ = 0 , (4.14)

where we have rewritten the equation in dimensionless variables and defined ω̃ = R2ω/b.

4.1.1 Normal modes

Next we consider the Minkowski embeddings that asymptote to zero separation m̃ = 0
at infinity and solve numerically the equation of motion (4.14) imposing the following
boundary conditions at ρ̃ = ε = 10−6:

ζ(ε) = 1; ζ ′(ε) = 0; (4.15)
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Figure 11. A plot of the spectrum of the ground state of the symmetry breaking phase. The
spectrum remains real even for temperatures above the critical temperature, represented by the
vertical dashed line. The spectrum drops to zero at the state corresponding to divergent heat
capacity.

the spectrum is obtained by requiring regularity of the solution at infinity.

To study the ground state of the meson spectrum in the symmetry broken phase and
its temperature dependence we generate a plot of ω/ω0 versus T/

√
B using that:

ω√
B
∝ 1
√
η
ω̃ (4.16)

and that the zero temperature value of the frequency ω0 corresponds to the η →∞ limit.
A plot of of ω/ω0 versus 1/

√
η is presented in figure 11.

As one can see for low temperature the ground state is tachyon free and the confined
symmetry breaking phase is the stable one. Furthermore even for temperatures above the
critical one (the vertical dashed line in the figure) the symmetry breaking phase remains
metastable. If we further increase the temperature the energy of the ground state decreases
sharply. Remarkably at the maximal temperature for witch confined phase exists the energy
of the ground state drops to zero. Note that at this point the heat capacity also diverges as
the plot of the entropy density from figure 6 infers. Note that near the maximal temperature
there is an alternative confined phase represented by a red curve in figure 5 and having
negative slope in figure 6. A study of the meson spectrum shows that this phase has
tachyonic ground state and is unstable. The spectrum is represented by the blue curve in
figure 12.
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4.1.2 Quasinormal modes

To study the deconfined phase we need to study the quasinormal excitations of the probe
D5-branes. This suggests imposing ingoing boundary conditions at the horizon of the
geometry this is why it is more convenient to use spherical coordinates in the transverse
R6 subspace. The equations are further simplified if we introduce a new radial coordinate:

u2 =
4r4 + b4

4r2
. (4.17)

In the new coordinates the metric of the AdS5 × S5 black hole is given by:

ds2/α′ = −u
4 − b4

R2u2
dt2 +

u2

R2
d~x2 +

R2u2

u4 − b4
du2 +R2(dθ2 + cos θ2dΩ2

2 + sin θ2Ω̃2
2) . (4.18)

note that in these coordinates fluctuations along l correspond to fluctuations along θ. It
is also a straightforward exercise to rewrite the equation of motion for δl (4.11) in terms
of θ(u) and δθ(u). It is convenient to introduce dimensionless coordinates ũ = u/b. The
resulting equation of motion is given by:

∂ũ

(
g(ũ)(ũ4 − 1)δθ′

(1 + ũ4−1
ũ2 θ′2)2ũ2

)
+

g(ũ)
(1 + ũ4−1

ũ2 θ′2)ũ2
2̃δθ +

g(ũ)
1 + ũ4−1

ũ2 θ′2

∆(2)

cos θ2
δθ (4.19)

−

[
∂2
θg(ũ)− ∂ũ

(
ũ4−1
ũ2 θ′

1 + ũ4−1
ũ2 θ′2

∂θg(ũ)

)]
δθ = 0 ,

where

g(ũ) = ũ2 cos θ2

(
1 +

η2

ũ4

)1/2(
1 +

ũ4 − 1
ũ2

θ′2
)1/2

; (4.20)

2̃ =
R4

b2

[
−∂2

0

1− 1
ũ4

+
∂2

1 + ∂2
2

1 + η2

ũ4

]
.

To study the spectrum of the fluctuations we consider an ansatz:

δθ = e−iωtζ(ũ). (4.21)

Note that in general ω is a complex number. The real part is naturally interpreted as the
energy of the excitation, while the imaginary part of ω is proportional to the relaxation time
of the excitation, provided that it is negative (Im(ω) < 0). Clearly a positive imaginary
part would lead to exponentially growing (with time) excitations. The existence of such
modes signals instability of the phase under consideration.

To quantize the spectrum we need to impose ingoing boundary conditions at the hori-
zon. To this end we focus on the equation of motion for ζ(ũ) near ũ = 1. To leading order
we have:

ζ ′′(ũ) +
1

ũ− 1
ζ ′(ũ) +

ω̃2

16(ũ− 1)2
ζ(ũ) = 0 , (4.22)
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Figure 12. A plot of the imaginary part of the of the quasinormal modes (the red curves) and of
the tachyonic sector of the normal modes (the blue curve). The vertical dashed line corresponds to
the critical temperature at which the Meson Melting phase transition takes place. The horizontal
dashed line corresponds to the highest quasinormal mode at zero temperature.

where we have defined ω̃ = R2

b ω. The most general solution of equation (4.22) is a linear
combination of (ũ − 1)±iω̃/4. However ingoing boundary conditions correspond to the
negative sign solution (ũ− 1)−iω̃/4 (for the choice of signs considered in (4.21)). To impose
the ingoing boundary condition we define:

ζ(ũ) = (ũ− 1)−iω̃/4S(ũ) (4.23)

and solve numerically the resulting equation of motion for S(ũ) imposing Dirichlet bound-
ary condition at the horizon (S(1) = 1;). The quasinormal modes are obtained by selecting
regular solutions at infinity. More precisely we require that |(ũ − 1)−iω̃/4S(ũ)| ∼ 1/ũ2 as
we send ũ → ∞. Next we consider the classical black hole embeddings which have a zero
separation at infinity m̃ = 0. There are two classes of solutions. Solutions which develop
separation in the bulk of the geometry and hence describe deconfined symmetry breaking
phase and the θ ≡ 0 solution which has restored symmetry. It turns out that that the
spectrum of quasinormal modes for both type of solutions contain a mode which is purely
imaginary and thus particularly convenient to study numerically. A plot of the spectrum
is presented in figure 12. The smooth red curve corresponds to the θ ≡ 0 solution and
thus describe a deconfined phase with restored global symmetry. As one can see for large
temperatures the imaginary part of the quasinormal mode is negative and thus the phase
is stable. As we lower the temperature we reach the critical temperature represented by
the vertical dashed line. At this point a first order phase transition takes place and the
thermodynamically favored phase is the confined symmetry breaking phase. However as
one can see from figure 12 the symmetric phase remains metastable even for temperatures
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below the critical one and thus describe states that can be reached by supercooling. If we
continue to lower the temperature the imaginary part of the quasinormal mode becomes
positive and the deconfined phase is unstable. Remarkably this happens at the point
where the symmetry breaking black hole solutions and the θ ≡ 0 solutions meet. In the
limit T → 0 the spectrum approaches the spectrum for pure AdS5 × S5 space represented
by the horizontal dashed line.

The symmetry breaking deconfined phase is represented by the short red curve with
positive slope in figure 12 (and negative slope in figure 6). As one can see it has quasinormal
excitations with positive imaginary components and is thus unstable. This fits nicely with
the fact that it has a negative heat capacity (negative slope in figure 6).

Finally the blue curve in figure 12 corresponds to Minkowski solutions which have
tachyonic meson spectrum and is obtained by solving equation (4.14). This phase is rep-
resented by a blue curve in the entropy density versus temperature plot (figure 6) and has
a negative slope. Clearly it is unstable as both the presence of tachyons and negative heat
capacity suggest. Note that the kink in figure 12, where the red and blue curves join, corre-
sponds to embeddings near the critical embedding which separates black hole embeddings
and Minkowski embeddings. A more detailed analysis of the theory in this regime would
reveal a discrete self-similar behavior [13]. We will not elaborate further on this property
of the set up.

4.1.3 The zero magnetic field case

For completeness and to verify the validity of our numerical analysis it is instructive to study
in details the spectrum of quasinormal modes at finite temperature and zero magnetic field.
At zero bare mass we can employ the technique used in ref. [12] and solve the corresponding
Heun equation.

To begin with let us write down the equation of motion (4.20) for the fluctuations of
the θ ≡ 0 embedding:

δθ′′(ũ) +
(

4ũ3

ũ4 − 1
− 2η2

ũ(ũ4 + η2)

)
δθ′(ũ) +

(
ω̃2ũ4

(ũ4 − 1)2
+

2ũ2

ũ4 − 1

)
δθ(ũ) = 0. (4.24)

Next we focus on the η = 0 case and consider the substitution x = 1− 1/ũ2. The equation
of motion is written as:

δθ̈ +
1 + 3(1− x)2

2x(1− x)(2− x)
δθ̇ +

(
ω̃2

4x2(1− x)(2− x)2
+

2
4x(1− x)2(2− x)

)
δθ = 0. (4.25)

Equation (4.25) has four regular singularities x = 0, 1, 2,∞ with exponents
{−iw̃/4,+iw̃/4}, {1/2, 1}, {−ω̃/4,+ω̃/4}, {0, 0}. Upon the change of variables:

δθ(t, x) = e−iωtx−i
ω̃
4 (1− x)(x− 2)−

ω
4 y(x) (4.26)
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equation (4.25) takes the standard form of a Heun equation

ÿ(x) +
(
γ

x
+

δ

x− 1
+

ε

x− 2

)
ẏ(x) +

αβ −Q
x(x− 1)(x− 2)

y(x) = 0 , (4.27)

with parameters:

γ = 1− iw̃/2; δ = 3/2; ε = 1− ω̃/2; Q = 3/2− (1/4 + i)ω̃ − (1/4− i/8)ω̃2;

α = 3/2− (1/4 + i/4)ω̃; β = 1− (1/4 + i/4)ω̃; ε = α+ β − γ − δ + 1. (4.28)

Next we look for solutions of equation (4.27) satisfying y(0) = y(1) = 1. This selects
solutions of equation (4.24) obeying ingoing boundary condition at the horizon (x = 0)
and an appropriate behavior at infinity (x = 1). The method that we use is the one
employed in ref. [12] for the D3/D7-brane set up. We consider a Frobenius series near
x = 0 satisfying the recursion relation:

an+2 +An(ω̃)an+1 +B(ω̃)an = 0 , (4.29)

where An(ω̃) and Bn(ω̃) are given by:

An(ω̃) = −(n+ 1)(2δ + κ+ 3(n+ γ)) +Q

2(n+ 2)(n+ 1 + γ)
(4.30)

Bn(ω̃) =
(n+ α)(n+ β)

2(n+ 2)(n+ 1 + γ)
(4.31)

and a0 = 1, a1 = Q/2γ. Next we define a continued fraction [12, 38]:

rn =
an+1

an
= − Bn(ω̃)

An(ω̃) + rn+1
, (4.32)

the convergency condition is given by:

r0 = Q/2γ . (4.33)

To obtain approximate expression for r0 we cut the recursive relation at some sufficiently
large n (n = 150 in our case) and use the asymptotic expression for rn:

rn =
1
2
− 2 + ω̃

4n
+ . . . (4.34)

Next we solve the resulting algebraic equation for ω̃. The spectrum for the first 11 lowest
quasinormal modes is given in table 1. Qualitatively the spectrum of quasinormal modes
has the same structure as the one for the D3/D7-brane system studied in ref. [12]. As one
can see from the plot in table 1 for large k the quasinormal modes satisfy the approxi-
mate relation:

ω̃k = ±0.68− .33i+ (2k + 1)(±1− i) (4.35)
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k Re(ω̃) Im(ω̃)
0 ±1.6906 -1.3268
1 ±3.6805 -3.3269
2 ±5.6780 -5.3261
3 ±7.6769 -7.3258
4 ±9.6764 -9.3256
5 ±11.676 -11.326
6 ±13.676- 13.325
7 ±15.676 -15.325
8 ±17.676 -17.325
9 ±19.675 -19.325
10 ±21.675 -21.325 -20 -10 0 10 20

-20

-15

-10

-5

0

ReHΩ
� L

Im
HΩ�

L

Table 1. Quasinormal modes for the first 11 excited states.

If we apply the numerical techniques used to generate the spectrum in figure 12 to
obtain the spectrum presented in table 1 we find that the results agree with relative error
of 0.01% (for the lowest quasinormal modes). A more complete and detailed study of the
spectrum of quasinormal modes for non-zero magnetic field is beyond the scope of this
paper. However analysis of equation (4.24) shows that as the magnetic field increases the
lowest lying modes given in table 1 shift radially away from the origin. Furthermore a new
set of quasinormal modes with vanishing real part emerges. The lowest lying of these modes
is the one analyzed in the previous subsection. As one can see from figure 12 for sufficiently
large magnetic fields this mode becomes tachyonic. If we keep on increasing the magnetic
field more and more tachyonic modes emerge. In the strict η →∞ limit (corresponding to
vanishing temperature) the spectrum contains an infinite tower of tachyonic modes. The
qualitative behavior is similar to the one described in [22] where the zero temperature
spectrum for the D3/D7-brane set up was explored.

4.2 Fluctuations along φ and ψ

In this subsection we study fluctuations along φ and ψ. Since translations along φ and ψ

correspond to the generators of the spontaneously broken SU(2) symmetry for small bare
masses we expect to detect pseudo-Goldstone modes. This is why we focus on the spectrum
in the confined phase. The spectrum at zero temperature has been extensively studied in
ref. [31]. We expect that the qualitative behavior at finite temperature will remain the
same in the confined phase.

The equations of motion derived from the quadratic action (4.6) are the following:

∂ρ

(
g(ρ)l2

1 + l′2
∂ρδψ

)
+

4g(ρ)R4l2

4r4 + b4
2̃δψ +

g(ρ)l2

ρ2
∆(2)δψ − PH∂0δφ = 0 , (4.36)

∂ρ

(
g(ρ)l2

1 + l′2
∂ρδφ

)
+

4g(ρ)R4l2

4r4 + b4
2̃δφ+

g(ρ)l2

ρ2
∆(2)δφ+ PH∂0δψ = 0 ,
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where 2̃ is given in equation (4.12). Next we consider a plane-wave ansatz:

δφ = ei(ωt−
~k̇~x)η1(ρ); δψ = ei(ωt−

~k̇~x)η2(ρ) , (4.37)

now using the ansatz (4.37) we get:

∂ρ

(
g(ρ)l2

1 + l′2
η′1

)
+

4g(ρ)R4l2

4r2 + b4

(
ω2

1− 16b4r4

(4r4+b4)2

−
~k2

1 + 16R4H2r4

(4r4+b4)2

)
η1 − iωPHη2 = 0 , (4.38)

∂ρ

(
g(ρ)l2

1 + l′2
η′2

)
+

4g(ρ)R4l2

4r4 + b4

(
ω2

1− 16b4r4

(4r4+b4)2

−
~k2

1 + 16R4H2r4

(4r4+b4)2

)
η2 + iωPHη1 = 0 .

The equations of motion in (4.38) can be decoupled by the definition η± = η1 ± iη2. The
result is:

∂ρ

(
g(ρ)l2

1 + l′2
η′+

)
+

4g(ρ)R4l2

4r4 + b4

(
ω2

1− 16b4r4

(4r4+b4)2

−
~k2

1 + 16R4H2r4

(4r4+b4)2

)
η+ − ωPHη+ = 0 , (4.39)

∂ρ

(
g(ρ)l2

1 + l′2
η′−

)
+

4g(ρ)R4l2

4r4 + b4

(
ω2

1− 16b4r4

(4r4+b4)2

−
~k2

1 + 16R4H2r4

(4r4+b4)2

)
η− + ωPHη− = 0 .

We can now solve numerically the equations of motion by imposing boundary conditions:

η±(ε) = 1; η′±(ε) = 0; (4.40)

for some sufficiently small ε ∼ 10−6. The spectrum is quantized by requiring that η± ∼ 1/ρ
for large ρ. Since we are interested in the confined phase we consider η = 4.5 > ηcr.
The resulting spectrum is presented in figure 13, where we have introduced dimensionless
parameters m̃ = m/b and w̃ = R2ω/b. As one can see for large bare masses there is a
Zeeman splitting of the energy levels, and the spectrum approximates to the spectrum for
zero temperature and magnetic field studied in refs. [39, 40], where the authors obtained
the following relation:

ωn =
2m
R2

√
(n+ 1/2)(n+ 3/2) , (4.41)

between the eigenvalue of the nth excited state ωn and the bare mass m. The black fitting
lines in figure 13 correspond to equation (4.41).

It is also evident that at zero bare mass the ground state has zero frequency. This
is the Goldstone mode of the broken SU(2) symmetry. Note that we have broken two
generators while we observe only a single Goldstone mode. This is the same behavior as
in the zero temperature case studied in ref. [31]. The apparent contradiction is clarified
by the observation that the SO(1,2) Lorentz symmetry is broken down to SO(2) rotational
symmetry (by both the external magnetic field and the finite temperature) and hence the
Goldstone theorem is not applicable. In fact the absence of Lorentz symmetry opens the
possibility of having two types of Goldstone modes. Type I Goldstone modes which satisfy
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Figure 13. A plot of ω̃ versus m̃. One can observe a Zeeman splitting of the energy levels at large
bare masses m̃. And the existence of a pseudo-Goldstone mode at small bare masses.

odd dispersion relation:
ω(k) ∝ k2j+1; j = 0, 1, 2, . . . (4.42)

and type II Goldstone modes which satisfy even dispersion relation:

ω(k) ∝ k2j ; j = 1, 2, . . . . (4.43)

An example of type I Goldstone mode is a Goldstone mode satisfying linear (relativistic)
dispersion relation corresponding to j = 0 in (4.42). An example of type II Goldstone
mode is a Goldstone mode satisfying quadratic (non-relativistic) dispersion relation cor-
responding to j = 1 in (4.43). There is a theorem due to Nielsen and Chadha (ref. [41])
which states that the number of GBs of type I plus twice the number of GBs of type II is
greater than or equal to the number of broken generators. As we are going to show below
the single Goldstone mode that we see in figure 13 satisfies a quadratic dispersion relation
(hence is of type II) and since we have broken two generators the Nielsen and Chadha
theorem is satisfied.

Another interesting feature of the set up is that for small bare masses the pseudo-
Goldstone modes satisfy a modified Gell-Mann-Oaks-Renner relation [42]. Indeed as it can
be seen from the first plot in figure 14 we have a linear relation (as opposed to square root
one) between the frequency ω̃ and the bare mass m̃. It turns out that the slope of the
observed linear relation is given by:

ω̃ =
4
πη
c̃0m̃ , (4.44)

where c̃0 represents the condensate at zero bare mass. In fact one can prove a more general
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Figure 14. Plots of the linear relation ω̃ ∝ m̃ and of the non-relativistic dispersion relation of the
pseudo-Goldstone modes.

result:
ω̃ = γ

~̃
k

2

+
4
πη
c̃0m̃ , (4.45)

where

γ =
4
πη

∞∫
0

dρ̃
4g(ρ̃)l̃2(4r̃4 + 1)

(4r̃4 + 1)2 + 16η2r̃4
(4.46)

and we have defined ~̃
k = R2~k/b. Let us first verify the dispersion relation from equa-

tion (4.45) numerically. To this end we consider a D5-brane embedding with a very small
bare mass m̃ ≈ 0.00062. Next we generate a plot of ω̃ versus k̃ for fixed η = 4.5. The
resulting plot is presented in figure 14. The black fitting curve corresponds to the relation:

ω̃ ≈ 0.0004326 + 0.1010~̃k
2

. (4.47)

On the other side the expression for γ form equation (4.46) is γ ≈ 0.1011 and by calculating
numerically c̃0 and for m̃ ≈ 0.00062 we obtain 4c̃0/π ≈ 0.0004321. One can see that the
relative error is 0.06% and 0.05% correspondingly. The analytic prove of the dispersion
relation in equation (4.45) is a generalization of the zero temperature case considered in
ref. [31]. Let us briefly provide the proof.

4.2.1 Low energy dispersion relation

Let us consider the limit of small ω in equation (4.39) thus leaving only the linear potential
term in ω.

∂ρ̃

(
g(ρ̃)l̃2

1 + l̃′2
η′+

)
−

(
ω̃P̃ η +

4g(ρ̃)l̃2(4r̃4 + 1)
(4r̃4 + 1)2 + 16η2r̃4

~̃
k

2
)
η+ = 0. (4.48)

Note that we have written down equation (4.48) in the dimensionless variables defined pre-
viously and used the notation P̃ = P/R4. It is convenient to define the following variables:

Θ2 =
g(ρ̃)l̃2

1 + l̃′2
; ξ = η+Θ . (4.49)
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Then equation (4.48) can be written as:

ξ̈ − Θ̈
Θ
ξ −

(
ω̃P̃ η +

4g(ρ̃)l̃2(4r̃4 + 1)
(4r̃4 + 1)2 + 16η2r̃4

~̃
k

2
)

ξ

Θ2
= 0 . (4.50)

Where the overdots represent derivatives with respect to ρ. Now if we take the limit m̃→ 0
and k̃ → 0 we have that ω̃ → 0 and obtain that:

ξ = Θ|ω̃=0 ≡ Θ̄ , (4.51)

is a solution to equation (4.50). Our next step is to consider small m̃ and expand:

ξ = Θ̄ + δξ ; Θ = Θ̄ + δΘ , (4.52)

where the variations δξ and δΘ are vanishing in the m̃ → 0 limit. Then, to leading order
in m̃ (keeping in mind that ω̃ ∼ m̃ and~̃k2 ∼ m̃) we obtain:

δξ̈ −
¨̄Θ
Θ̄
δξ − δ

(
ω̃P̃ η +

4g(ρ̃)l̃2(4r̃4 + 1)
(4r̃4 + 1)2 + 16η2r̃4

~̃
k

2
)

1
Θ̄

= 0 . (4.53)

Now we multiply equation (4.53) by Θ̄ and integrate along ρ̃. The result is:

(Θ̄δξ̇ − ˙̄Θδξ)
∣∣∣∞
0
− (Θ̄δΘ̇− ˙̄ΘδΘ)

∣∣∣∞
0
− ω̃η

∞∫
0

dρ̃P̃ (ρ̃)− πη

4
γ
~̃
k

2

= 0 . (4.54)

Using the definitions of Θ, P̃ (ρ̃) and ξ and requiring regularity at infinity for η+, one can
show that the first term in equation (4.54) vanishes and that:

(Θ̄δΘ̇− ˙̄ΘδΘ)
∣∣∣∞
0

= c̃δm̃ ;

∞∫
0

dρ̃P̃ (ρ̃) = −π/4 , (4.55)

and hence using that δm̃ = m̃ we obtain equation (4.45) which we duplicate below:

ω̃ = γ
~̃
k

2

+
4
πη
c̃0m̃ , (4.56)

Further analysis of the pseudo-Goldstone spectrum would involve derivation of the effective
chiral action along the lines of ref. [31]. We leave such studies for future investigations.

5 Conclusion

In this paper we studied flavored holographic 1+2 dimensional Yang-Mills theory at finite
temperature in an external magnetic field. One of the main results of our studies was the
construction of the phase diagram of the theory in section 3. It seems that the observed
structure of the phase diagram can be understood based on rather general grounds. At
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a weak magnetic field the observed quadratic behavior in figure 4 can be understood as
representing the fact that the theory is describable by a Born-Infield like action and hence
the free energy density is an even function of the magnetic field. The square root behavior
at large magnetic fields on the other side represents competition of energy scales and thus
is consequence of the freezing effect that the magnetic field has on the phase transition.
Perhaps this could explain why the phase diagram in the coordinates used in figure 3 has
the same shape as the phase diagram of the 1+3 dimensional case studied in refs. [24, 25].
The similarity with the phase diagram of the Gross-Neveu model in 1+2 dimensions studied
in refs. [17, 18] could perhaps also be interpreted along these lines. It would be interesting
to use alternative non-perturbative techniques to study the phase diagram of the defect
field theory holographically dual to our set up and compare with the result obtained via
the AdS/CFT correspondence.

Interesting feature of the theory is the observation that the magnetic field and the
temperature have the same effect on the theory for large bare masses. This is to be
contrasted to the results for the D3/D7-brane set up. More precisely this suggests that one
can tune the sign of the condensate at large bare masses. Furthermore, one has analytic
control on that regime of the theory. It is worth looking for possible applications of this
property of the system.

Another interesting feature of the theory is the enhanced relative jump of the entropy
density at zero bare mass. It would be interesting to employ alternative methods and ex-
plore the jump of entropy density. For example by counting how the number of microstates
changes. It is also intriguing that the ratio of the entropy density before and after the phase
transition seems to be numerically very close to 2π suggesting that perhaps this ratio can
be obtained in a closed form.

A possible direction for future studies is the derivation of the temperature dependence
of the condensate of the theory at zero bare mass, using alternative field theory approach.
In general such studies could verify the validity of the holographic set up.

An interesting property of the D3/D5-brane set up is that the holographic renormal-
ization of the D5-brane action does not require additional counter terms due to the external
electric or magnetic field. This enables one to define unambiguously the magnetization of
the theory. This observation suggests that D5-brane probing of more complicated asymp-
totically AdS5 geometries would still have the same property. It would also be interesting
to further analyze the temperature dependence of the diamagnetic response in the decon-
fined phase and attempt to model that dependence based on the control that we have on
the temperature dependence of other properties of the theory, such as the conductivity.

The meson spectrum of the theory could also be analyzed in more details. For example
a more complete study of the spectrum of quasinormal modes including non-zero bare
masses. Finally, studies of the effective chiral action along the lines of the studies performed
in [31] are of potential phenomenological interest.
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